Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Mol Psychiatry ; 2023 Apr 07.
Article in English | MEDLINE | ID: covidwho-2291503

ABSTRACT

Neuroinflammatory disorders preferentially impair the higher cognitive and executive functions of the prefrontal cortex (PFC). This includes such challenging disorders as delirium, perioperative neurocognitive disorder, and the sustained cognitive deficits from "long-COVID" or traumatic brain injury. There are no FDA-approved treatments for these symptoms; thus, understanding their etiology is important for generating therapeutic strategies. The current review describes the molecular rationale for why PFC circuits are especially vulnerable to inflammation, and how α2A-adrenoceptor (α2A-AR) actions throughout the nervous and immune systems can benefit the circuits in PFC needed for higher cognition. The layer III circuits in the dorsolateral PFC (dlPFC) that generate and sustain the mental representations needed for higher cognition have unusual neurotransmission and neuromodulation. They are wholly dependent on NMDAR neurotransmission, with little AMPAR contribution, and thus are especially vulnerable to kynurenic acid inflammatory signaling which blocks NMDAR. Layer III dlPFC spines also have unusual neuromodulation, with cAMP magnification of calcium signaling in spines, which opens nearby potassium channels to rapidly weaken connectivity and reduce neuronal firing. This process must be tightly regulated, e.g. by mGluR3 or α2A-AR on spines, to prevent loss of firing. However, the production of GCPII inflammatory signaling reduces mGluR3 actions and markedly diminishes dlPFC network firing. Both basic and clinical studies show that α2A-AR agonists such as guanfacine can restore dlPFC network firing and cognitive function, through direct actions in the dlPFC, but also by reducing the activity of stress-related circuits, e.g. in the locus coeruleus and amygdala, and by having anti-inflammatory actions in the immune system. This information is particularly timely, as guanfacine is currently the focus of large clinical trials for the treatment of delirium, and in open label studies for the treatment of cognitive deficits from long-COVID.

2.
Neurosci Biobehav Rev ; 145: 105000, 2023 02.
Article in English | MEDLINE | ID: covidwho-2159622

ABSTRACT

ARNSTEN, A.F.T., M.K.P. Joyce and A.C. Roberts. The Aversive Lens: Stress effects on the prefrontal-cingulate cortical pathways that regulate emotion. NEUROSCI BIOBEHAV REV XXX-XXX, 2022. The symptoms of major-depressive-disorder include psychic pain and anhedonia, i.e. seeing the world through an "aversive lens". The neurobiology underlying this shift in worldview is emerging. Here these data are reviewed, focusing on how activation of subgenual cingulate (BA25) induces an "aversive lens", and how higher prefrontal cortical (PFC) areas (BA46/10/32) provide top-down regulation of BA25 but are weakened by excessive dopamine and norepinephrine release during stress exposure, and dendritic spine loss with chronic stress exposure. These changes may generate an attractor state, which maintains the brain under the control of BA25, requiring medication or neuromodulatory treatments to return connectivity to a more flexible state. In line with this hypothesis, effective anti-depressant treatments reduce the activity of BA25 and restore top-down regulation by higher circuits, e.g. as seen with SSRI medications, ketamine, deep brain stimulation of BA25, or rTMS to strengthen dorsolateral PFC. This research has special relevance in an era of chronic stress caused by the COVID19 pandemic, political unrest and threat of climate change.


Subject(s)
COVID-19 , Depressive Disorder, Major , Humans , Brain , Emotions/physiology , Prefrontal Cortex/physiology , Depressive Disorder, Major/therapy
3.
Neuroimmunology Reports ; : 100154, 2022.
Article in English | ScienceDirect | ID: covidwho-2122719

ABSTRACT

Background : Prolonged cognitive deficits (“brain fog”) following COVID19 infection (long-COVID) are common and debilitating, yet there are currently no approved treatments. Cognitive impairment particularly targets the working memory and executive functions of the prefrontal cortex (PFC). The PFC has unusual neurotransmission and neuromodulation that render it vulnerable to stressors, and basic research has identified mechanisms that protect PFC connections. Based on the basic neuroscience data, we tried a combined open label treatment to bolster prefrontal function: the α2A-adrenoceptor agonist, guanfacine, which strengthens prefrontal connectivity, and the anti-oxidant, N- acetylcysteine (NAC), which protects mitochondria and reduces kynurenic acid blockade of NMDA receptors. Case Report : Twelve patients with “brain fog” including difficulties in executive functions were treated with guanfacine (1mg, PO bedtime for the first month, increased to 2mg after 1 month, if well-tolerated) and 600 mg NAC daily. Guanfacine+NAC improved cognitive abilities in eight of the twelve patients;four patients discontinued therapy, two for unspecified reasons and two due to hypotension and/or dizziness, common side effects of guanfacine. Those who stayed on guanfacine+NAC reported improved working memory, concentration, and executive functions, including a resumption of normal workloads. One patient briefly stopped taking guanfacine due to a hypotensive episode and reported a return of cognitive deficits that abated with resumed guanfacine treatment. Conclusion : Although placebo-controlled trials will be needed to more rigorously demonstrate efficacy, as these agents have established safety, they may be immediately helpful in treating the large number of patients suffering from prolonged cognitive deficits following COVID19 infection.

4.
Mol Psychiatry ; 27(10): 4252-4263, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1900469

ABSTRACT

Glutamate carboxypeptidase-II (GCPII) expression in brain is increased by inflammation, e.g. by COVID19 infection, where it reduces NAAG stimulation of metabotropic glutamate receptor type 3 (mGluR3). GCPII-mGluR3 signaling is increasingly linked to higher cognition, as genetic alterations that weaken mGluR3 or increase GCPII signaling are associated with impaired cognition in humans. Recent evidence from macaque dorsolateral prefrontal cortex (dlPFC) shows that mGluR3 are expressed on dendritic spines, where they regulate cAMP-PKA opening of potassium (K+) channels to enhance neuronal firing during working memory. However, little is known about GCPII expression and function in the primate dlPFC, despite its relevance to inflammatory disorders. The present study used multiple label immunofluorescence and immunoelectron microscopy to localize GCPII in aging macaque dlPFC, and examined the effects of GCPII inhibition on dlPFC neuronal physiology and working memory function. GCPII was observed in astrocytes as expected, but also on neurons, including extensive expression in dendritic spines. Recordings in dlPFC from aged monkeys performing a working memory task found that iontophoresis of the GCPII inhibitors 2-MPPA or 2-PMPA markedly increased working memory-related neuronal firing and spatial tuning, enhancing neural representations. These beneficial effects were reversed by an mGluR2/3 antagonist, or by a cAMP-PKA activator, consistent with mGluR3 inhibition of cAMP-PKA-K+ channel signaling. Systemic administration of the brain penetrant inhibitor, 2-MPPA, significantly improved working memory performance without apparent side effects, with largest effects in the oldest monkeys. Taken together, these data endorse GCPII inhibition as a potential strategy for treating cognitive disorders associated with aging and/or neuroinflammation.


Subject(s)
COVID-19 , Dorsolateral Prefrontal Cortex , Humans , Animals , Haplorhini , Macaca , Cognition , Glutamates
5.
Am Psychol ; 76(5): 729-743, 2021.
Article in English | MEDLINE | ID: covidwho-1226409

ABSTRACT

The COVID-19 pandemic is an unanticipated and uncontrollable chronic stressor that is detrimental to the mental and behavioral health of children and families, particularly those from disadvantaged and marginalized backgrounds. Chronic stress impairs a myriad of prefrontal cortical functions, important for coping with the COVID-19 pandemic, and has consequences on dyadic parent-child functioning. Informed by neuroscience and clinical evidence, sensitive parenting is a vital avenue of intervention that buffers against the toxic effects of COVID-19 on parent-child mental health. In the context of the COVID-19 pandemic, we first discuss the neurobiological, psychological, and behavioral mechanisms behind exacerbated mental health risks in families. We then highlight the role of sensitive parenting as a buffer against stress-related mental health problems, and conclude with recommendations for systemic-, family-, and individual-interventions to most effectively address stress-related mental health problems and their impact on children and families during the COVID-19 pandemic. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Subject(s)
Adaptation, Psychological , COVID-19 , Pandemics , Prefrontal Cortex/physiology , COVID-19/psychology , Family , Humans , Mental Health , Psychotherapy
6.
Front Psychiatry ; 12: 654322, 2021.
Article in English | MEDLINE | ID: covidwho-1201916

ABSTRACT

The dorsolateral prefrontal cortex (dlPFC) generates the mental representations that are the foundation of abstract thought, and provides top-down regulation of emotion through projections to the medial PFC and cingulate cortices. Physiological recordings from dlPFC Delay cells have shown that the generation of mental representations during working memory relies on NMDAR neurotransmission, with surprisingly little contribution from AMPAR. Systemic administration of low "antidepressant" doses of the NMDAR antagonist, ketamine, erodes these representations and reduces dlPFC Delay cell firing. In contrast to the dlPFC, V1 neuronal firing to visual stimuli depends on AMPAR, with much less contribution from NMDAR. Similarly, neurons in the dlPFC that respond to sensory events (cue cells, response feedback cells) rely on AMPAR, and systemic ketamine increases their firing. Insults to NMDAR transmission, and the impaired ability for dlPFC to generate mental representations, may contribute to cognitive deficits in schizophrenia, e.g., from genetic insults that weaken NMDAR transmission, or from blockade of NMDAR by kynurenic acid. Elevated levels of kynurenic acid in dlPFC may also contribute to cognitive deficits in other disorders with pronounced neuroinflammation (e.g., Alzheimer's disease), or peripheral infections where kynurenine can enter brain (e.g., delirium from sepsis, "brain fog" in COVID19). Much less is known about NMDAR actions in the primate cingulate cortices. However, NMDAR neurotransmission appears to process the affective and visceral responses to pain and other aversive experiences mediated by the cingulate cortices, which may contribute to sustained alterations in mood state. We hypothesize that the very rapid, antidepressant effects of intranasal ketamine may involve the disruption of NMDAR-generated aversive mood states by the anterior and subgenual cingulate cortices, providing a "foot in the door" to allow the subsequent return of top-down regulation by higher PFC areas. Thus, the detrimental vs. therapeutic effects of NMDAR blockade may be circuit dependent.

SELECTION OF CITATIONS
SEARCH DETAIL